skip to main content


Search for: All records

Creators/Authors contains: "Kurz, Mark D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT This note describes improvements of UV oxidation method that is used to measure carbon isotopes of dissolved organic carbon (DOC) at the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS). The procedural blank is reduced to 2.6 ± 0.6 μg C, with Fm of 0.42 ± 0.10 and δ 13 C of –28.43 ± 1.19‰. The throughput is improved from one sample per day to two samples per day. 
    more » « less
  2. ABSTRACT Radiocarbon ( 14 C) is an isotopic tracer used to address a wide range of scientific research questions. However, contamination by elevated levels of 14 C is deleterious to natural-level laboratory workspaces and accelerator mass spectrometer facilities designed to precisely measure small amounts of 14 C. The risk of contaminating materials and facilities intended for natural-level 14 C with elevated-level 14 C-labeled materials has dictated near complete separation of research groups practicing profoundly different measurements. Such separation can hinder transdisciplinary research initiatives, especially in remote and isolated field locations where both natural-level and elevated-level radiocarbon applications may be useful. This paper outlines the successful collaboration between researchers making natural-level 14 C measurements and researchers using 14 C-labeled materials during a subglacial drilling project in West Antarctica (SALSA 2018–2019). Our strict operating protocol allowed us to successfully carry out 14 C labeling experiments within close quarters at our remote field camp without contaminating samples of sediment and water intended for natural level 14 C measurements. Here we present our collaborative protocol for maintaining natural level 14 C cleanliness as a framework for future transdisciplinary radiocarbon collaborations. 
    more » « less
  3. ABSTRACT This study describes a procedural blank assessment of the ultraviolet photochemical oxidation (UV oxidation) method that is used to measure carbon isotopes of dissolved organic carbon (DOC) at the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS). A retrospective compilation of Fm and δ 13 C results for secondary standards (OX-II, glycine) between 2009 and 2018 indicated that a revised blank correction was required to bring results in line with accepted values. The application of a best-fit mass-balance correction yielded a procedural blank of 22.0 ± 6.0 µg C with Fm of 0.30 ± 0.20 and δ 13 C of –32.0 ± 3.0‰ for this period, which was notably higher and more variable than previously reported. Changes to the procedure, specifically elimination of higher organic carbon reagents and improved sample and reactor handling, reduced the blank to 11.0 ± 2.75 µg C, with Fm of 0.14 ± 0.10 and δ 13 C of –31.0 ± 5.5‰. A thorough determination of the entire sample processing blank is required to ensure accurate isotopic compositions of seawater DOC using the UV oxidation method. Additional efforts are needed to further reduce the procedural blank so that smaller DOC samples can be analyzed, and to increase sample throughput. 
    more » « less
  4. null (Ed.)
    ABSTRACT The sources and fate of radiocarbon ( 14 C) in the Dead Sea hypersaline solution are evaluated with 14 C measurements in organic debris and primary aragonite collected from exposures of the Holocene Ze’elim Formation. The reservoir age (RA) is defined as the difference between the radiocarbon age of the aragonite at time of its precipitation (representing lakeʼs dissolved inorganic carbon [DIC]) and the age of contemporaneous organic debris (representing atmospheric radiocarbon). Evaluation of the data for the past 6000 yr from Dead Sea sediments reveal that the lakeʼs RA decreased from 2890 yr at 6 cal kyr BP to 2300 yr at present. The RA lies at ~2400 yr during the past 3000 yr, when the lake was characterized by continuous deposition of primary aragonite, which implies a continuous supply of freshwater-bicarbonate into the lake. This process reflects the overall stability of the hydrological-climate conditions in the lakeʼs watershed during the late Holocene where bicarbonate originated from dissolution of the surface cover in the watershed that was transported to the Dead Sea by the freshwater runoff. An excellent correlation (R 2 =0.98) exists between aragonite ages and contemporaneous organic debris, allowing the estimation of ages of various primary deposits where organic debris are not available. 
    more » « less
  5. Rare high-3He/4He signatures in ocean island basalts (OIB) erupted at volcanic hotspots derive from deep-seated domains preserved in Earth’s interior. Only high-3He/4He OIB exhibit anomalous182W—an isotopic signature inherited during the earliest history of Earth—supporting an ancient origin of high3He/4He. However, it is not understood why some OIB host anomalous182W while others do not. We provide geochemical data for the highest-3He/4He lavas from Iceland (up to 42.9 times atmospheric) with anomalous182W and examine how Sr-Nd-Hf-Pb isotopic variations—useful for tracing subducted, recycled crust—relate to high3He/4He and anomalous182W. These data, together with data on global OIB, show that the highest-3He/4He and the largest-magnitude182W anomalies are found only in geochemically depleted mantle domains—with high143Nd/144Nd and low206Pb/204Pb—lacking strong signatures of recycled materials. In contrast, OIB with the strongest signatures associated with recycled materials have low3He/4He and lack anomalous182W. These observations provide important clues regarding the survival of the ancient He and W signatures in Earth’s mantle. We show that high-3He/4He mantle domains with anomalous182W have low W and4He concentrations compared to recycled materials and are therefore highly susceptible to being overprinted with low3He/4He and normal (not anomalous)182W characteristic of subducted crust. Thus, high3He/4He and anomalous182W are preserved exclusively in mantle domains least modified by recycled crust. This model places the long-term preservation of ancient high3He/4He and anomalous182W in the geodynamic context of crustal subduction and recycling and informs on survival of other early-formed heterogeneities in Earth’s interior.

     
    more » « less
  6. Abstract

    The Icelandic hotspot has erupted basaltic magma with the highest mantle‐derived3He/4He over a period spanning much of the Cenozoic, from the early‐Cenozoic Baffin Island‐West Greenland flood basalt province (49.8RA), to mid‐Miocene lavas in northwest Iceland (40.2 to 47.5RA), to Pleistocene lavas in Iceland's neovolcanic zone (34.3RA). The Baffin Island lavas transited through and potentially assimilated variable amounts of Precambrian continental basement. We use geochemical indicators sensitive to continental crust assimilation (Nb/Th, Ce/Pb, MgO) to identify the least crustally contaminated lavas. Four lavas, identified as “least crustally contaminated,” have high MgO (>15 wt.%), and Nb/Th and Ce/Pb that fall within the mantle range (Nb/Th = 15.6 ± 2.6, Ce/Pb = 24.3 ± 4.3). These lavas have87Sr/86Sr = 0.703008–0.703021,143Nd/144Nd = 0.513094–0.513128,176Hf/177Hf = 0.283265–0.283284,206Pb/204Pb = 17.7560–17.9375,3He/4He up to 39.9RA, and mantle‐like δ18O of 5.03–5.21‰. The radiogenic isotopic compositions of the least crustally contaminated lavas are more geochemically depleted than Iceland high‐3He/4He lavas, a shift that cannot be explained by continental crust assimilation in the Baffin suite. Thus, we argue for the presence oftwogeochemically distinct high‐3He/4He components within the Iceland plume. Additionally, the least crustally contaminated primary melts from Baffin Island‐West Greenland have higher mantle potential temperatures (1510 to 1630 °C) than Siqueiros mid‐ocean ridge basalts (1300 to 1410 °C), which attests to a hot, buoyant plume origin for early Iceland plume lavas. These observations support the contention that the geochemically heterogeneous high‐3He/4He domain is dense, located in the deep mantle, and sampled by only the hottest plumes.

     
    more » « less